
Effects of Interacting Colloids on Transport Rates 
By W. I. HIGUCHI 

A theoretical analysis along with the resulting equations pertinent to the qualitative 
and quantitative aspects of the dissolution and deposition of solid materials in 
colloidal solutions and transport of solutes across diffusional barriers is presented. 

N A NUMBER of situations involving diffusion of I a solute, colloidal agents present may be ex- 
pected to play important roles, such as  dissolution 
and deposition of solid materials in colloidal 
solutions and transport of solutes across diffu- 
sional barriers, physiological or otherwise. 

A survey of the literature has shown that  the 
general problem has not received much theoretical 
consideration. Because of the frequent occur- 
rence of systems involving colloids, a n  analysis of 
this problem appeared to  be worthwhile. This 
report gives such an analysis and the resulting 
equations, which are relatively simple, should be 
useful both qualitatively and quantitatively in 
discussing all problems of transport in which 
colloids are suspected of being important. 

NO COLLOID CASE 

Figure 1 illustrates the problem of the diffusional 
transport of a single solute a t  a concentration 
C=CO in compartment I to compartment I1 where 
the solute concentration is C=Ch. We assume that 
the mixing rates in compartments I and I1 are suffi- 
ciently rapid, so that the rate will be controlled 
entirely by the barrier in the region 0 5 X _< h, 
where A’ is the coordinate and h is the barrier thick- 
ness. Also convection in the barrier is assumed t o  
be negligible. 

From the biopharrnaceutical standpoint, the 
barrier may be a membrane, or it may represent the 
diffusion layer controlling the deposition or dis- 
solution rate of solid materials in yilro or in civo. 
In  the latter cases, one of the compartments will be a 
solid phase. 

It is convenient to discuss problems of this type 
in two portions-the nonsteady state and the steady 
state. 

For the particular case C=Co, C=C(x)=O, and 
C=Ch=O a t  time = 0, the Fick’s law treatment 
gives (1) 

h2 

6D 
7 = -  (Eq. 1) 

for the lag time, where D is the diffusion coefficient 
of the solute in the barrier. The lag time corre- 
sponds roughly t o  the initial nonsteady state period 
during which simultaneous transfer of the solute 
through the barrier and concentration buildup of 
the solute in the barrier is taking place. In this 
case 7 defines the nonsteady state period. Equation 
1 assumes that a t  all times the total amount of 

solute in the barrier phase is small compared to  the 
amounts of solute in compartment I, and that the 
diffusion coefficient, D. is independent of concentra- 
tion in the range of C ( x )  encountered in the barrier. 
In most practical situations involving simple clif- 
fusion these assumptions are valid. 

At times large compared to r ,  dC(x)/dt = 0 
throughout the barrier, and we have the steady state 
diffusion case. We may then write for the dif- 
fusional transport rate (1) 

where Kl and Krr are the equilibrium partition 
coefficients, KI  = concentration of solute in barrier/ 
concentration of solute in I and KII = concentration 
of solute in barrier/concentration of solute in 11. 

When KICo >> KilCh 

Thus, according to Eq. 3 the transport rate of a 
drug across a lipid barrier separating two aqueous 
compartments would be directly proportional to the 
lipid-water partition coefficient, and the initial dif- 
fusion controlled dissolution rate of a solid in pure 
solvent would be proportional to the solubility, 
KICo. As we shall see below. these conclusions may 
frequently be in serious error when applied to cases 
involving interacting colloids. 

STEADY STATE DIFFUSION WITH 
COLLOIDS 

In  most solute dissolution and deposition problems 
and in many membrane transport problems the 
steady state considerations alone should explain the 
behavior of the system.’ Therefore, while the non- 
steady state case will be considered briefly later, let 
us first examine the steady state situation in detail. 

The steady state treatment here differs from that 
(2) in which the interaction of the solute with 
reactant results in only one or a few new products. 
Here one must consider the possibility of a very 
large number of “species” resulting from the reac- 
tions 

nS + colloid = [colloid-S,] 

where S is a solute molecule and n may go from 
unity to a very large number. For the moment, let 
us assume that there will be only a single species of 
free colloid. Also we assume that the barrier (or 
diffusion layer) is pure liquid, except for the solute 
and colloid. 

In Fig. 2 we have broken down the barrier into 
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1 The criteria for this is that we are primarily interested in 
transport involving amounts of solute much larger than those 
present in the barrier a t  any time and that the times for ap- 
preciable changes in solute concentration in each of the 
compartments are large compared t o  the lag time of the 
hamer. 
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x=o x = h  

Fig. 1.-Illustration of the problem of diffusion 
across barrier in the region 0 < x < h. 

sublayers of thickness, ax,  so that 6 x  << h. Now 
assume that the interaction between the colloid and 
solute occurs rapidly enough so that in the element 
of volume 6 x  there is equilibrium' between the bound 
and free solute. The amount of solute bound per 
mole of colloid particles, c b ,  will then be a function 
only of the free solute concentration, C, at constant 
temperature and pressure. As is well known, cb 

generally increases with increasing C and goes to 
zero when C goes to zero. 

Steady state requires that no net changes in 
solute or colloid concentration occur in any element 
of volume of the barrier with time. This means 
that what comes into element from one side must 
leave at the same rate from the other side. Focus- 
ing our attention on the plane at x and the two 
adjacent elements of volume, we see that the rate of 
diffusion of the colloid across the plane x will be 

D,(x )  [M(x - 1 / 2 6 ~ )  ~. - M(x + 1/26~)]  
6 X  

G, = 

(Eq. 4) 

where D , ( x )  is the average diffusion coefficient for 
the colloid particle over the two elements of volume 
and M ( x  - ' / , a x )  and M ( x  + I/&) are the 
average concentrations of the colloid in the two 
elements. 

Now the rate of diffusion of total solute across the 
plane at x will be 

Fig. 2.-Consideration of barrier elements in the 
region 0 < x < h. (See text for explanation.) 

5 is the diffusion rate of the free solute across plane 
x .  and the second terma is the rate of solute trans- 
port by the "carrier" mechanism. 

In the case bx -L 0 the above equations may be 
approximated by 

and 

Equation 7 may also be 

(Eq. 8 )  

It is worthwhile to point out that Eq. 8 shows that 
even when Go = 0, i .e . ,  no net diffusion of the colloid, 
there may be a contribution to  solute diffusion by 
the colloid. This is an important special case dis- 
cussed below. 

Special Case of G, = 0, D, and D, Independent of 
C.-This case would apply to the many situations in 
which there is no net transfer of the colloid itself. 
Thus, in the dissolution or deposition of a solid the 
colloid must not be a part of the solid, but acts only 
as a "camer" in the solution phase. The assump- 
tion of constant D, would be a good one for dilute 
solutions (no solute-solute interactions). For D, to 
be constant, i t  would be necessary that the size 

where D, is the diffusion coefficient of the free solute 
in the medium, C(x - 1/26x) and C(x + 1/26x) are 
the average free solute concentrations in the two 
elements, and c b  ( x  - 1/26x) and cb ( x  + 1/26x) are 
the average amounts of the bound solute per mole of 
colloid in the two elements. The first term in Eq. 

3 Most interactions of interest to  us-solubilization and 
physical adsorption-generally are expected to  have small 

For these cases, the rate of 
equilibrabon would be expected to  be determined by how 
rapidly the free solute molecules will diffuse to  or away from 
the colloid particle in question. The corresponding uilibrn- 
tion times then can be shown t o  be the order Ot"ka*/D,. 
where a is of the order of the dimensions of the colloid par- 
ticle, D, is the salute diffusion coefficient, and K is the colloid- 
solvent distribution coe5cient. treating the colloid aa a 
phase. For commonly oceumng vducs of K and a. the 
times are indeed generally much smaller than the barrier lag 
times to be discussed later-unless the barrier thickness, h.  is 
the order of the colloid particle size. This means that there 
may not be equilibrium for a colloid particle having traveled 
distances smaller than L = a(KDc/D#l*, whereDcis thedif- 
fusion caelcient for the colloid particle; but if L is small 
compared to h .  this should be negligible. 

m enerr(ies of activation. 

(hydrodynamic radius) of the colloid be relatively 
insensitive both to the colloid concentration and to 
the amount of solute bound in the range of C 
encountered in the barrier (or diffusion layer). If 
the colloid is a flexible chain organic polyelectrolyte, 
if the organic solute is an ion with opposite charge, 
and if the ionic strength of the medium is low, this 
assumption may be very poor because the extent of 
expansion of the polyelectrolyte-solute complex may 
be very sensitive (3) to  the degree of binding. On 
the other hand, if the colloid is relatively rigid or, if a 
micelle does not swell appreciably with increased 

8 This assumes that the bound solute is transported without 
loss or gain from one element to  the next. Thus, dx must be 
taken small compared to L = a 2' -I (?ee Fmfnofe 2). 
but large compared to  Brownian motion distances. Thts 
can be done because the latter are much smaller than L. 
However Cb now must be interpreted as both a space average 
(over d x j  and a number average (over different extents of 
equilibration of bound and free solute). 
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binding and if intercolloidal interactions are negli- 
gible, D, may not vary much. 

For this case Eq. 7 becomes 

d C  G, = D. - + Dc M dCb d x  dx (Eq. 9)  

Integration over the boundary conditions consistent 
with Fig. 1 then gives 

where K,,  Kz ,  and D ,  refer to the solvents’ in the two 
compartments and the barrier as before. cho and 
Cbh are the values for cb at x = 0 and x = h, respec- 
tively. 

For two reasons Eq. 10 shows that the conclusions 
following Eq. 3 may not apply to situations involving 
colloids. First, D ,  may be much smallefl than D.. 
Second, the binding function cb may not be linear 
with respect to  C; therefore, C& - CM may not be 
proportional to CO - Ch. 

An extreme example of the first may be obtained 
from the studies of Wurster and Polli ( 6 ) .  From 
their experiments on the effect of Norite A on the 
dissolution rate of benzoic acid, these investigators 
pointed out that the adsorbent did not influence the 
dissolution rate as long as ch << CO; i.e., only free 
solute contributed to the transport rate under these 
conpitions. Equation 10 is consistent with these 
conclusions if we note that D ,  in this case was 
several orders of magnitude smaller than D8.  This 
more than offset the effect of the factor (MCao) 
which may have otherwise increased the dissolution 
rate significantly. 

Recent studies (7) on the dissolution rate of di- 
butyl phthalate droplets in normal saline containing 
O . l O ~ o  polysorbate6 20 show that the rate is a t  least 1 
order of magnitude slower than predicted by solu- 
bility data. These observations are consistent with 
the formation of highly swollen micelles or “micro- 
emulsions” that diffuse slowly. 

It is of interest to note that the above point con- 
cerning nonlinearity of rates with respect to Co - ch 
leads to equations which have been able to  describe 
toe phenomenon of “facilitated” diffusion ( 8 )  in 
biological membranes. If the function, cb, is 
assumed to be of the Langmuir type, i.e. 

where kl and kf are the conventional constants, then 
Eq. 10 becomes 

4 The local heterogeneous nature of the medium due to the 
presence of the colloid may be ignored for present purposes 
11 the colloid concentration is low (a few per cent or so). 
Actually the ermeability constant P = D,K, in Bq. 10 
should be Dmdm,  where Dm istheeflectivediffusion coefficient 
of the solute in the colloid solufion. and Km is the artition 
coefficient for the compartment I hase and the col& s o h -  
lion. However, DIKl and DmKm 80 not differ much for dilute 
solutions (4). For nonsteady state considerations, this 
matter must be taken into account because Dm may be much 
smaller than D.. even though D.KI z DnKm.  

6By about one order of magnitude for high molecular 
weight macromolecules (3) and micelles (5) and perhaps by 
two to three orders of magnitude when larger colloidal agents 
are involved. This follows from the Stokes-Einstein rels- 
tion, DO = kT/B*oa. where k ia the Boltzmann constant, T 
is absolute temperature. a is the hydrodynamic radius of the 
colloid, and w is -sit 

6 Marketed as Tween g0 by the Atlas Powder Co., Wilming- 
ton, Del. 

The expression in which only the second term of Eq. 
11 is important has been employed to  explain the 
transport of sugars through membranes (8 ) .  

Other Steady State Cases.-Let us briefly con- 
sider other possible situations of interest which 
follow from the general Eqs. 7 and 8. If in a solid 
deposition process the colloid is deposited to some 
extent along with the solute, then the dM/dx term 
will contribute toward a greater rate. Similarly, 
the dissolution rate of a solid material containing an 
interacting colloid will be greater by this term when 
other conditions (solute solubility, Ch, colloid con- 
centration in solution) remain the same. In  both of 
these instances, if the solid composition and solubili- 
ties are known, Eq. 8 may be integrated t o  give an 
equation analogous to Eq. 10. 

As Eq. 7 applies to the single colloid species prob- 
lem, it will be necessary t o  write the following equa- 
tion for the general case 

and if ( d M i / d x )  = 0 for all i, ix., no net colloid 
transport, we obtain 

Therefore, if a mixture of colloidal particles is 
present, Eq. 13 states that the importance of the 
particular species in transport is directly propor- 
tional to  its concentration, diffusion coefficient, and 
the gradient of its solute binding. On the basis of 
Eq. 13 one would expect that, for example, deposi- 
tion of cholesterol in the human body would not be 
greatly facilitated by high cholesterol levels if most 
of the cholesterol is distributed among large particles 
in the physiological fluids, but would be if the solute 
is bound to  the smaller molecules present. Also the 
in  Vivo release of drugs by dissolution in the gastro- 
intestinal tract may be facilitated by the smaller 
interacting agents in the intestinal fluids if sufficient 
binding is present, but to a much lesser extent if the 
important binding agents are large particles. 

NONSTEADY STATE ASPECTS 

Let us examine the lag time, T ,  for solute diffusion 
involving colloids for the single colloid species case 
in which the colloid concentration is constant in the 
barrier with time and position and where the solute 
binding is proportional to the free solute concentra- 
tion. We may write two expressions for the lag 
time. One is used when the free solute transport is 
more important, and the other when the “camer” 
transport is more important. 

When D.Co >> D,MCm, the lag time problem 
would be the same as that for solute diffusion into 
and through an absorbing emulsion layer (4). 
Therefore, we may write 

h2 
7 ‘ u -  

6Dm 

for the same problem leading to Eq. 1, but with the 
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Iarrier containing an interacting colloid material. 
Now D ,  is given by ( 4 )  

i J m  

K ,  D, = 

where P ,  and K ,  are the permeability coefficient 
md partition coefficient for the compartment I phase 
md the colloid solution barrier phase I t  has been 
shown (4) that P, and P = D,K1 would be about 
the same for dilute colloid solutions. i . e  , the steady 
state rates of the free solute contribution to trans- 
port and of the zero colloid case would be essentially 
the same. However, K, would be greater than K1 
~y the factor 

yo + .vcbo 
-0 

Therefore. T in Eq. 14 would be greater than the r 

given by Eq. 1 by approximately this factor. 

When U,MCK, >> l).Co, the lag time for the same 
problem will be determind by the transport rate of 
the colloid and we may write 

h' 
iD, 

r ..- -- ,Eq. 15) 
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Thiaindanones I1 

Nitration, Acetylation, and Mannich Reactions 

By JOSEPH S A M  and ALONZO C .  THOMPSON 

The nitration, acetylatioo, and Mannich reac- 
tions withthiaindanonesare described. These 
reactions were observed to be analogous to 
similar reactions with 2-acylthiophenes nod 

1-indanooe. 

m 4 r N D A N o N m ,  represented by structures I 
Tand 11, were observed to undergo reactions 
similar to those encountered with acylthiophenes 
[ I I I )  and indanones (IV).  

I1 
I 

"I IV 

'The nitration of 5-methylthiaindanone (V) re- 
sulted in both ring substitution (VI) and in ring 
cleavage (VII).  The ratio of nuclear substitu- 
tion to carbonyl displacement was dependent 
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upon the temperature a t  which the nitration was 
performed. At a temperature below -6' ( - 6  
to -15') only the nuclear substituted nitro 
derivative was isolated, whereas above 0" (0 to 
10') both carbonyl displacement and ring sub- 
stitution occurred (Table I). 

Structures V1  and V I I  were assigned to the 
nitration products on the tmsis of analysis, neu- 
tralization equivalent in the case of V I I ,  and 
analogy to the nitration products of 9-acetyl- 
thiophene. 

Rinkes (1) had shown earlier that  replacement 
of the carbonyl group by the nitro group takes 

TABLE I . - ~ I T R A T I O N  OF 0.1 MOLE O F  S M E T H Y L -  
T>XIAIXDAS-6-OSK 

Temp.. Ratio of VI/VI I ,  
"C. Gm. 
- 15 1 O : O  

- 6  12:O 
0 S:?  

5 : 3  
, 

10 
* .  


